
JOURNAL OF COMPUTATIONAL PHYSICS 36, 182-197 (1980) 

A Highly Convergent Perturbative Method for the Solution of Systems 

of Coupled Equations Arising from the Schrijdinger Equation 

L. GR. IXARU 

Institute of Physics and Nuclear Engineering, 
Division of Fundamental Physics, P.O. Box 5206, Bucharest, Romania 

Received March 2, 1979; revised August 28, 1979 

A new method is here proposed for the solution of systems of coupled equations arising 
from the Schrodinger equation. It is essentially a perturbative method lying upon piecewise 
constant reference potential. Its algorithm includes the zeroth-order solutions plus cor- 
rections from the first two orders of the perturbation theory. The local truncation error 
and the accumulated error are proportional to h’ and he, respectively. A typical experimental 
example is also reported. This shows that our method is faster by an order of magnitude 
than the methods of Numerov and of de Vogelaere while the number of steps required is 
smaller by an order of magnitude. 

1. INTRODUCTION 

A new method for solving systems of coupled differential equations arising from 
the Schr&linger equation is here developed. Our method is essentially a perturbative 
method based upon piecewise constant reference potential. Thus it preserves the 
general advantages of the perturbative methods such as the possibility of obtaining 
accurate solutions at coarse partitions as well as the capability of being used safely 
in case of higher energies. It also preserves the specific advantage of the perturbative 
methods based upon piecewise constant potential of yielding stable results at narrow 
partitions, a property discussed at large in Refs. [ 1, 21 for the case of single equations. 

The algorithm includes the zeroth-order solution plus corrections from the first 
two orders of the perturbation theory. Its local truncation error and accumulated 
error behave as h7 and h6, respectively. For comparison, recall that for the methods 
of Numerov [3], de Vogelaere [4], and Gordon [5, 61, the two errors behave as h6 and 
h4, as h5 and h4, and as h3 and h2, respectively. There are no such investigations for the 
perturbative methods of Rosenthal and Gordon [7] and Andresen [8], but there are 
reasons to believe that their errors are proportional to h5 and h4, and to h3 and h2, 
respectively. 

2. BASIC LEMMA 

We consider for moment the following Cauchy problem in a single step: 

y” + (EI - Py8)) y = 0, 
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where the energy E is a scalar, I is the N x N unit matrix, Pig(S) is an N x N matrix 
of functions, y(S), y,, and JJ~ are column vectors with N elements. 

To solve it we introduce a reference potential Vref(6), i.e., a potential so that the 
system 

yref” + (EZ - vref(S)) yref = 0, 6 E LO, Al, (2.2) 

admits analytic solutions. Let the N x N matrices Pf(6) and zPr(S) be two sets of 
linear independent solutions of this system, with the initial conditions 

u;y(o) r--1 v;;yo> = u~;f’(O) = vy(0) = 0 for i + ,j, (2.3a) 

u~;f(o) = @‘(O) = 1) fqf’(O) = q;f(o) = 0, i = I, 2 ,..,, N. (2.3b) 

The solution of Eq. (2.2) with the initial conditions y’+?‘(O) = y, , ~ref’(O) : J& then 
reads 

yref(S) -= f@(S) y, -1 N(S) y; . (2.41 

The reference equation (2.2) is used to obtain the solution of the original equation 
(2.1) by means of the perturbation theory. If the potentials Pig and Pf are close 
together the perturbation theory converges and the actual recipe for constructing the 
solution of Eq. (2.1) is given by the following 

LEMMA. The solution of Eq. (2.1) reads 

Y@) = 4) Yo + 49 Yh > 

where u and v are given by series with respect to the perturbation 

A v = v”“qs) - v-f(S), 

i.e., 

u(S) = uyq + d(S) + uyq + *.., 

v(S) = Pf(S) + d(S) + v2(S) + ‘... 

The N x N matrices of functions uk and vlc are the solutions of the systems 

uk” = (P-f(S) - EI) uli + d VzF, k = 1, 2,..., 

21k” I= (v*ef(S) - Ez) 29 + A V2+-1, k = 1, 2,..., 

with vanishing initial conditions, 

uk(0) = f+(O) = Uk’(0) = v”‘(0) = 0 

and ~0 = @f, ~0 = vref. 

(2.5) 

(2.6) 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2.9) 
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This lemma is exactly the Rayleigh-Ritz approach for the initial-value problem. 
Its proof is straightforward and can be made without difficulty. In fact, write Prig = 
Pf + h d V, and search for u and v as series in powers of the coupling constant A, 

u(S) = f h”u”(S), v(S) = -f X”vk(S). (2.10) 
I;=0 k=O 

Next, introduce (2.5) with (2.10) into Eq. (2.1) and rearrange the terms in powers of A, 

hO[(uO” - (Pf - EZ) u”) y. + (0”” - (v-f - El) 0”) y;] 

This equation must be satisfied for any values of A, k, y0 , and yi . Then the coefficients 
of Pyo and h”yi should be zero, 

UOC = (p-f - EI) uo, ZP” = (Pf - EZ) YO, 

while the coefficients of Xkyo and of hkyL for k # 0 are just Eqs. (2.8a) and (2.8b). 
Moreover, if we identify u” and v” as u ref and vref, respectively, the initial conditions 
for ZP and vlr should be taken simply as zero, thus leading to Eq. (2.9). Q.E.D. 

lt is appropriate to mention that the way to calculate the perturbative corrections 
by means of this lemma is different from that used before in connection with perturb- 
ative numerical methods. For instance, Gordon [5, 61 also starts with the reference 
equation (2.2) but the exact solution of Eq. (2.1) is written as 

.I@) = uref(S) A(S) + v’“f(S) B(S), (2.11) 

i.e., the perturbation theory is applied to the coefficients A and B. While both ap- 
proaches are theoretically equivalent, the one given by this lemma appears to be more 
convenient. In fact, when used with some skill, it proves more handy and transparent. 
Second, the formulas of the perturbative corrections in u and v are definitely less 
sensitive with respect to the cancellation of like terms than those of the corrections 
in A and B. These points will be detaiIed in various discussions below. 

3. THE ALGORITHM 

We consider the system of N coupled equations (arising from the SchrBdinger 
equation) 

y/n(x) + (EZ - Y(x)) Y(x) == 0, x E [a, bl, (3.1) 
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with the initial conditions Y(a) = ?Pa , Y’(a) = ?Pi , where Ya and Y; are known 
column vectors with N elements. The potential matrix V(x) is supposed to be a real 
N x N symmetric matrix and each element Vii(x) is a well-behaved function. (The 
numerical treatment of Eq. (3.1) in the vicinity of the origin in the case when %Qx) 
contains singular terms proportional to X-~ and to x-l is described in Ref. [9].) 

A partition of [a, b] is introduced, 

x0 = a, x1 , x2 ,..., x, = b, 

so that one is left with the Cauchy problem in each individual interval; the initial 
conditions are the values computed at RHS of the previous interval. 

To fix the ideas take the current interval [x, , x~+~ = x, + h], introduce the inner 
variable 6 = x - x, , 0 < 6 < h, and denote v(6) = V(x, + S), #(a) = Y(x, + 6). 
Equation (3.1) now reads 

f(6) i- (EZ - 43) #@I = 0, 6 E LO, hl, +W> = Y&J, yW) = W-G>. 

(3.2) 

Construction of the Reference Potential 

The perturbation procedure for solving Eq. (3.2) gains in efficiency if the reference 
potential is taken as close as possible to u(6) and, in addition, if it is a diagonal matrix. 
The last requirement suggests a change of representation of Eq. (3.2) such that, in 
the new basis, the system becomes as uncoupled as possible. (Such a procedure was 
also used in Refs. [5-g].) We do this as follows. First, we approximate ~(6) by a 
parabola: 

u(S) --+ o(S) = u + 61 (s - 5) + 32 (P - $). (3.3) 

The best fit is obtained by use of formulas (A4) of Ref. [lo], for each element ,t/ij 
All three matrices, 6, +Y, and c2, will be symmetric, as was the original v(6), from 
which they were derived. In particular this is true for 6, which represents the approxi- 
mation of the potential function matrix elements by constants. Thus a unitary matrix 
U always exists which brings u to a diagonal matrix B and therefore it generates a 
basis in which the system becomes almost uncoupled. In this basis the system reads 

y” + (EZ - w9) y(S) = 0, 6 E LO, 171, Y(O) = Yo > y’(0) = 4’; ) (3.4) 

with y(S) = UT+(a) (U T is the transposed of U) and 

v(s)-v+v’(s-~)+v2(s2-~), j7=U%U, v~=u=Pu, s-1,2. 

(3.5) 
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Equation (3.4) can be solved as shown in the previous section with the following 
identifications: Prig = V(S), Pf = P, and 

A v =G Vl (s - 4, + v2 (P - qj. (3.6) 

Zeroth-Order Solution 

By its very construction the reference potential P is a diagonal matrix. Thus the 
linear independent solutions of the reference equation are also diagonal matrices. 
They read: 

u~;f(S) = S,,&Fi ) S), v,f,“f(S) = S,,q(F, ) S), (3.7) 

where I;i :: Vii - E. The functions f and v are defined in the Appendix, Eqs. (Al) 
and (A2). 

Perturbative Corrections (General Scheme) 

Formulas of the first-order corrections for a constant reference potential evaluated 
on the basis of representation (2.11) are given in [6]. Here we use the more natural 
representation, Eq. (2.5). As explained in [2], the latter also ensures higher com- 
putational accuracy. 

The basic observation for our scheme, which is valid in any order k of the pertur- 
bation theory, is that the pair .$, 7 remain closed on differentiation with respect to 6; 
see Eqs. (A15). This suggests that the solutions of Eqs. (2.8a) and (2.8b) can be sought 
as linear combinations of this set; for instance, 

(3.8) 

To find the coefficients ak and bti we insert (3.8) in (2.8a) and, for fixed i, j, and k, 
obtain the following inhomogeneous system of 2N linear differential equations: 

(3.9a) 

with the initial conditions (at 6 = 0) 

(3.9b) 

The system (3.9a), (3.9b) admits a unique solution of polynomial form provided the 
inhomogeneous term in each equation of the system is also a polynomial in 6. To see 
this, use is made of the observation that the coefficients in the LHS of Eq. (3.9a) are 
simple numbers, not functions of 6. Thus a particular solution of polynomial form 
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can be found at once and this is unique except for the free terms in uzGi and bfjGi 
(note that their coefficients in Eq. (3.9a) are zero). These two constants are finally 
adjusted according to the initial conditions. 

Therefore, as long as d V and the coefficients of the zeroth-order solutions are 
polynomials in 6 (and this is actually the case; see Eq. (3.6) and note that a’& = 6,j6jl 
and b’&.L = 0, as resulting from the first of Eqs. (3.7)) the perturbative corrections 
can be evaluated analytically in any order k of the perturbation theory. As for the 
practical problem of how many of them should actually be taken to obtain an optimal 
algorithm, this is settled by computational arguments, as seen below. 

First-Order Correction 

The solution of the Cauchy problem, Eq. (3.4), is given by the transfer matrix 
algorithm 

(3.10) 

This is a condensed form for Eq. (2.5) and its derivative with respect to 6. The latter 
must be also included since we need both y(6) and y’(S), which, evaluated at 6 = h, 
yield the initial conditions on the next interval. 

From the first of Eqs. (3.7) it is found that a&;, = &&, and b&l = 0 and therefore 
u:(S) will consist of a sum of only four nonvanishing terms, viz.: 

z&(S) = a&i&& , 8) + dj,j&Fj , 6) + btj;iy(Fi , 6) + b&(Fj , 6). (3.11) 

Accordingly, the system (3.9a), (3.9b) also consists of only four equations. The 
solutions are 

u& = [; ZZV;~ - Vfj (- ; - 20 + 8FjD2)] D, (3.12a) 

bij;i = Vjj(Fi + Fi) D2, (3.12b) 

aifii = [Vij (6 - i) + VFj (8” - $f - 20 + 8FjD2)] D, (3.12~) 

bij;j = -2D’Fj(Vfj + 2V&DS), (3.12d) 

where D = (Fj - F&l. Equations (3.11) and (3.12a)-(3.12d) give the analytic 
expression of & at any 6 E [0, h]. However, we are mainly interested in the value of 
UZ at 6 = h. This is 

Uij(h) = D’Vij [A 4 LJi + (A + 2FJ Ti + $ dff - 2(A + Fi) Tj] 

+ D”Vfj [- (- ; A2 + 64 + 8F,) & + (f /&is + 64 + gF,) & 

- 44(4 + Fi) /IQ]. (3.13) 
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Here fl = D-l = Fj - Fi and the label i on the auxiliary functions .$ and 7 stands 
for the pair (Fi , h). 

When Fi and Fi are close together, the computation of Eq. (3.13) becomes difficult 
due to the heavy cancellation of the like terms. To cure this Taylor series are taken, 
in powers of d, for the functions & and yj (see Eqs. (A16)-(A17)); they lead to the 
following formula, valid for small d : 

l (Ti + $ h’q%) A3 - & (Xi - h2TJ Ad] -- 
16 

+ Gh [--5i+;(3pi+;5,)A 

)d2--(127i+h31p343]1. (3.14) 

The same procedure can be repeated for ZI:; , z& , and 0:; . Their formulas at 6 = h 
read: 

Ufj(h) = 0”Vt.j [2tJi + t Ar], - 2[j + i Avj] 

+ D”Vfj [- (- $ A2 + 24 + 8F,) 7)i - 4Ah & 

+(+2+6~+8F,)~j], (3.15) 

u;;(h) = D”Vi’ [(A + 2Fi) & + ; A& vi - (A + 2Fi) & + ; A(A + Fi) vjj] 

+ D3VTj [-Fi (- $ A2 + 64 + 8F,) vi - 2A(A + 2Fi) h& 

+(A +&)(+2+2A 1844, (3.16) 

u:;(h) = D”V& [i A[i + 2Fi7)i + i Afj - (A + 2Fi) qj] 

+ D”Vftj [- (- $ A2 + 24 + 8Fi) ti 

+ ($- A2 + 24 + SF,) & - 2A(A + 2Fi) hi]. (3.17) 

The case Fs -+ Fi can be equally accommodated by means of Eqs. (A16)-(A17). As 
for the accuracy, we find that the dimensionless parameter 

X= lAlh2 
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represents a good descriptor. For various values of X we compared the results given by 
the exact expressions with the ones given by their Taylor counterparts and found 
that the best correspondence (it is actually of about five coinciding figures) takes place 
for 1.7 < X < 2, no matter what the individual values of Fi , Fj , and h are. Conse- 
quently, the threshold value of X, = 1.8 was assumed for all subsequent computations. 
Note in passing that our five-figure accuracy compares very favorable with the one 
reported by Gordon [6], who observed that cases occurred in which the very signs 
of the computed corrections were altered due to heavy cancellation of like terms. 

The computational effort to evaluate the four matrices ul(h), vi(h), ul’(h), and z?‘(h) 
is approximately 60N%, where 7 is the time required to carry out one floating point 
multiply + one addition + one references main storage. To give a scale for this T 
note that the time to compute the product of two N x N matrices is N37. 

Second-Order Correction 

The computational effort to evaluate the second-order correction is proportional 
to N37 so that its inclusion will be efficient only if the constant of proportionality 
is a small number. Unfortunately this is not the case for the exact expressions of 
u2, v2, u2’, and v2’. (Our qualitative estimates indicate that the effort would be of at 
least 300N37.) Thus we are forced to look for approximations which lead to expres- 
sions which are less time-consuming and this is done in the following. 

We start with the observation that each second-order propagator is quadratic 
in the weights of the perturbation, viz.: 

Clearly, each of the 4N coefficients cu&(h), /3&(h), y;(h), and et(h) (s = 1, 2,..., Nand 
fixed i and j) is, for fixed h, an analytic function of Fi , Fj , and F, . Therefore we can 
use its Taylor expansion around the three-dimensional point (Fs , F, , FJ. For 
instance, at(h) reads: 

-~~(F,,F~,F~;h)+(F~-F~)~If,=F +(Fj-F,);;;(F;;F +.... 
I B i s 

(3.19) 

The leading term represents just the second-order diagonal contribution. Its expression 
is already known: it is the coefficient of VI2 in the perturbative scheme for single 
equations (see Appendix of Ref. [IO]), 

c&(h) = ol(F, , F, , Fs ; h) = (l/32) hp, . (3.20) 

(The, label s in the function p stands for the pair (F8 , h).) The error generated when 
only this term is retained in Eq. (3.19) can be found easily by dimensional arguments. 
It can be shown that [&/a4 = [a][F-‘1 = [a][h2], i.e., the relative error is propor- 
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tional to h2. As the coefficient c&(h) is itself a sixth-order function in h, the absolute 
error when only this is retained in Eq. (3.19) is obviously proportional to P. 

The inspection of the leading terms of the other coefficients in Eq. (3.18) and of 
the similar coefficients in the expressions of a2, u2’, and v2’ show that they are of the 
fifth order in h, at least. Therefore the approximations of these coefficients by their 
diagonal counterparts are correct within O(P), at least. 

A more realistic and also simple approximation is the one which averages over the 
three involved diagonal contributions, viz. : 

q(h) = f (as”,(h) + 0$(h) + &@)I = & NP, + Pj + Pi). (3.21) 

The relative error is also proportional to h2 but its coefficient should be numerically 
smaller than in the direct approximation (3.20). 

Further simplification is suggested by the fact that the leading terms of the coeffi- 
cients of VI’, VV2, V2V1, and Vz2 are proportional to hG, h7, h7, and ha, respectively, 
in u2 and u2’; to h’, h8, P, and hg in ~2; but to only h5, hG, h6 and h7 in u2’. For the last 
case, however, it can be shown that the coefficients of V2, h v1 V2, and h V2 V1 are equal 
within O(h’). Thus the use of the approximate linear perturbation 

d yapprox = J7la~~rox(,j - h/2), ylapprox = J,‘l + h J72 (3.22) 

instead of its exact expression, Eq. (3.6), is sufficient to compute second-order 
propagators with absolute errors of 0(/z’), at least. Moreover, this choice generates 
equal coefficients for u2 and v2’, and this is another helpful factor in decreasing the 
computational effort. 

In conclusion, the formulas of the approximate second-order propagators are 

t&(h) = & h ‘f v;;PProx(ps + pi + pj) v;;pprox, 
S=l 

(3.23a) 

u;;(h) = $ f ~f,aPProx(ps + pi + pj> yz;pprOx 
S-l 

(cll~ = 7p, - #“ii, k = i, j, s), 

v;;(h) = z.$(h). 

(3.23~) 

(3.23d) 

If formulas (3.23a)-(3.23d) are computed simultaneously (namely, compute 
Vspmox x V$~pProx once and then use its value in all of them), the computational *s 
effort is of only 4.5N%. For systems of 10 or 20 equations this is about as large as 
for the first-order propagators. 
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To summarize, our algorithm computes each propagator of the one-step transfer 
matrix, Eq. (3.10) as the sum of the contributions from the zeroth, Eqs. (3.7); first, 
Eqs. (3.13), (3.15), (3.16), (3.17); and second order, Eqs. (3,23a)-(3.23d), of the 
perturbation theory. The leading term of its truncation error is proportional to h’. 

4. CHOOSING STEP SIZES 

We follow here the procedure given in [lo] for single equations. However, since 
the formulas reported there are too long to be computed quickly in case of systems, 
our main task is now to compress them into forms which, while preserving enough 
accuracy, need only a small amount of computational effort. 

There are two main sources of error in each step. The first comes from the approxi- 
mation of the original potential by a parabola. It consists of two main kinds of 
contributions: 

(i) energy-dependent contribution 

(4.1) 

see Eq. (2.12a) of [lo], and 

(ii) energy-independent contributions 

which approximate Eqs. (2.8a)-(2.8d) of [IO]. 
The second major source is the limited number of orders of the perturbation theory 

incorporated into our algorithm to solve the system with parabolic matrix potential. 
Its importance is measured by the contributions from the nonincluded orders. In 
fact, two of them are dominant: 

(i) third-order contribution 

which approximates Eqs. (2.7a)-(2.7d) of Ref. [IO], and 

(ii) remaining terms from the second order, 

(4.3) 

E4 = g&h7 I(vl+ hV2)2 Pf qv1+ hV2)2 - 2(Vl$- hV2) iqv + hV2)l. 

(4.4) 
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Equation (4.4) takes into account the fact that only parts from the second-order 
correction were actually retained in our algorithm. This Ed has no analog in Ref. [lo]. 

The five contributions, namely, 8, Ed , Ed , Ed , and Ed , are sufficient to furnish 
reliable rules for choosing step sizes. Their computation is quite fast since they were 
systematized so as to contain operations with only three essential matrices, viz., v, 
V, + *hvd , and V1 + hP. The step size consistent with some preset level E for the 
local error is the solution of the equation 

h(h) = E, (4.5a) 

where 

W) = sup {(Eltj + EZi, + Es<, + QJ, &,,3, i,j = 1,2 ,..., N. (4.5b) 
i.i 

In the case when the preset quantity is not E but the level of the propagated error, call 
it TOLV, an extra computation is necessary to calculate the corresponding local level 
E; this is achieved by means of the equation 

E = [(b - a)c]-l TOLV7j6, (4.6) 

as also explained in [lo]. One should note here that generally too small values for 
the step sizes result from this procedure and this is the direct consequence of the fact 
that the procedure, as described above, makes use of only upper bounds for errors. 
However, as verified in practice, the simple replacement of Eq. (4.6) by the more 
relaxed one, E = TOLV7j6, usually compensates for this effect and so it is used in our 
program. 

5. NUMERICAL RESULTS 

We consider here the systems of coupled equations corresponding to the rotational 
excitation of a diatomic molecule by neutral particle impact; see [3, 41 and references 
therein. Specifically, we solve the same problem Allison solved in [3], which leads to 
systems of 4, 9, and 16 equations. We give detailed results for the middle case, N = 9. 
Our method (3) is compared with the matrix Numerov (1) and de Vogelaere (2) 
schemes. (The last two methods were also used in Ref. [3].) Our analysis is broader 
than Allison’s, in the sense that we do not restrict the investigation only to the accuracy 
in 1 S j2, as he did, but also extend it to Re S and Im S. 

For all three methods the initial point for integration was fixed at 0.75. Three 
different partitions are used for methods 1 and 2: 

(a) 60 steps at h = 0.015 followed by 140 steps at h, = 0.03, which result in 
rf = 5.85, 
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(b) 100 steps at h = 0.007 followed by 350 steps at h, = 0.014, i.e., r, = 6.35, 
as used by Allison, and 

(c) 140 steps at h = 0.005 followed by 490 steps at h, = 0.01, i.e., r, = 6.35. 
For our method the final point is always r, = 6.35 and the step sizes are adjusted 
automatically in terms of the preset global accuracy TOLV, as explained in the 
previous section. 

The computations were carried out in single-precision arithmetic on two computers: 
an IBM 370/l 35 at the Institute of Physics and Nuclear Engineering in Bucharest, and 
a CDC 6500 at the Joint Institute for Nuclear Research atDubna. The word length for 
the first computer is about seven decimal places in the mantissa. For the second 
computer it is about fourteen decimal places. The results computed on the CDC with 
method 3 at TOLV = lO-‘j were taken as reference. 

In Table I the maximum deviations of the computed Re S, Im S, and j S I2 from the 
reference data, for instance, 

max 1 d Re S j ==: sup 
i,i=1,2,...,iv 

/ Re SW - Re SzCpmrUt 1, El 

are presented, as well as the corresponding CPU times. For method 3 the first number 
in the CPU time column represents the actual time for integration. The second 
number, in parentheses, represents the preliminary time, i.e., the time consumed to 
generate the partition consistent with the preset TOLV. Clearly, only the first time is 
further consumed for each repeated integration of the system at different energies. 

The comparison of the results obtained from the two computers reveals the influence 
of the accumulation of the round-off errors. One sees that for methods 1 and 2 it is so 
severe on the IBM computer that these methods are not able to produce even one 
exact figure in the S-matrix elements. In contrast, it is impressively smaller in the case 
of method 3. In fact, on the IBM this yields results which are accurate within one unit 
at the third decimal place in Re S and Im S and within one unit at the fourth place in 
1 s 12. 

lf the accuracies are compared for Re S and Im S on one hand, and for j S j2 on 
the other, a major difference is revealed between the classical methods and the present 
method. For the former ones the results for 1 S j2 are by two orders of magnitude more 
accurate than for Re S and Im S. (This is actually normal simply because these 
methods are sensitive to the oscillating behavior of the wavefunctions, and also 
because the matrices Re S and Im S are merely descriptors of these oscillations. 
In contrast, i S I2 depends mainly on the wavefunction amplitudes.) For the present 
method the three errors are approximately equal. 

As for the practical efficiency one sees that for similar accuracies the number of 
steps required and the computing time are definitely smaller (by an order of magnitude 
or so) for the present method. 

One can thus conclude that this method exhibits advantages which may be well 
appropriate to treat numerically many physical problems. The program is available 
from the author on request. 
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APPENDIX 

In this paper we use the following basic functions (see also the Appendix of [IO]): 

[(F, 6) = (exp(P”8) + exp(-F1j26))/2 = cos(; F jljz S) for F < 0, 
= cosh(W26) for F > 0; (Al) 

q(F, 6) = (exp(F1/26) - exp(-F1/26))/2P/2 = sin(/ F ill2 8)/i F llje for F < 0, 
=S for F = 0, 
= sinh(F1126)/F1 j2 for F>O; 

(4 

W’, 6) = CW’, 6) - rl(F, W/C 643) 

p(F; 6) = (-(S2/3) TV', 6) + SE W/F: (A4) 

v(F, 6) =: -(5p(F, 6) -+ &S2<(F, S))/F; (A5) 

T(F, 6) = (7y(F, S) - S"p(F, S))/(lOF); 646) 

x(F, 6) - -(+(F, 6) + &,S2y(F, S))/F. (A7) 

Their series expansions in powers of 2 = FS2 read: 

HF, 6) = ‘fn c2j/j! Zq, (A@ 

rl(Fp 6) = 6 q$o (3 : I)! z*, 

W’, 6) = 2s3 f. c2; ; ;,! z”, 

P@‘, 6) = - ; 65 qzo (q gq1y5; 2, Zn, 

F(F, 6) = - ; 67 f (4 + ‘;;; ; ;;F + 3, zq, 
q=n 

+‘, 8) = & 69 f (4 + ‘)(q Gq2y9; 3)(q + 4, zq, 

IT=0 

(A9) 

(AlO) 

(Al 1) 

C4W 

W3) 

x(F, 6) = ; S1l 1 m (4 + l)(q + 2)(q + 3)(q + 4)(q + 5) zq 
(2q + II)! q=n W4) 
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In practical computations Eqs. (Al)-(A7) should be used for 1 Z 1 > Zthreshold , 
while for 1 Z / < Zthreshold the series expansions should accordingly be used. In the 
latter case seven terms in 5 should be retained; six in 7); five in 5, p, and v; and four 
in T and x, to obtain nine exact figures for Zthreshold = 1 and fifteen exact figures for 
Z threshold = 0.06. 

These functions obey the following differential relationships: 

Differentation with respect to 6: 

Differentiation with respect to F: 

ak+lg _ 6 6%) 
aFk+l 2 aF"' G41f-5) 

(A171 
Formulas (A16) and (A17) allow us to write the Taylor expansions of g(F + d, 8) and 
r(F + d, 6) in terms of the basic functions of arguments F and 6; such expansions are 
useful, among other things, to eliminate the indeterminacy for d + 0 in formulas 
(3.13), (3.15), (3.16), and (3.17). 

Note added in proof. In the meantime, several improvements have implemented our method. 
They refer mainly to the procedures of choosing step sizes and of computing second-order correc- 
tions. With the newer version, the accuracies mentioned in Table I are obtained with a reduction of 
about one half for both number of steps and CPU times. 
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